Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
VirusDisease ; 34(1):149, 2023.
Article in English | EMBASE | ID: covidwho-2312993

ABSTRACT

The field-deployable point-of-care diagnostic test for rapid detection of SARS-COV-2 is needed for implementation of the control measures. In this direction, recently developed CRISPR technology combined with isothermal recombinase polymerase amplification assay is a versatile highly sensitive detection platform for rapid diagnosis of infectious diseases. Here we report the development of RT-RPA-CRISPR based LFA assay for detection of SARS-CoV-2 targeting conserved RdRp and E genes. Various sets of primers and gRNAs were designed targeting conserved regions of the RdRp and E genes of different lineages of SARS-CoV-2 viruses. The isothermal RT-RPA based amplification reactions were standardized using invitro transcribed RNAs of the target regions. The optimum amplification was observed at 42degreeC for 30 min as confirmed by visualization of the amplicons in agarose gel. Subsequently, CRISPRCAS12 reaction was implemented for specific detection of amplicons. Different sets of gRNAs targeting RdRp and E genes were designed and synthesized by in-vitro transcription. The CRISP/CAS12-gRNA complex and single stranded fluorescence probe were added to the RT-RPA amplicons for cleavage of fluorescence probe in positive reaction. Subsequently, the cleaved probes were detected in precoated LFA strips. Upon probe cleavage reaction, the product was mixed with buffer and loaded into LFA strips. In positive reaction, test line showed strong band in test line and light band in control line. The standardized RT-RPA-CRISPR-LFA assay was tested for detection of SARS-CoV-2 using previously isolated RNAs from clinical cases of human SARS-CoV-2 infections. The developed assay successfully detected the positive cases. In conclusion, the developed assay could serve as versatile POC platform for rapid detection of SARS-CoV-2 nucleic acids in human as well as animals.

2.
Methods in Molecular Biology ; 2578:53-62, 2023.
Article in English | Scopus | ID: covidwho-2243611

ABSTRACT

Recent advances in biosensing analytical platforms have brought relevant outcomes for novel diagnostic and therapy-oriented applications. In this context, 3D droplet microarrays, where hydrogels are used as matrices to stably entrap biomolecules onto analytical surfaces, potentially provide relevant advantages over conventional 2D assays, such as increased loading capacity, lower nonspecific binding, and enhanced signal-to-noise ratio. Here, we describe a hybrid hydrogel composed of a self-assembling peptide and commercial agarose (AG) as a suitable matrix for 3D microarray bioassays. The hybrid hydrogel is printable and self-adhesive and allows analyte diffusion. As a showcase example, we describe its application in a diagnostic immunoassay for the detection of SARS-CoV-2 infection. © 2023, The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

3.
Anal Biochem ; 662: 114995, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2235275

ABSTRACT

The nucleoprotein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is abundantly expressed during infection, making it a diagnostic target protein. We analyzed the structure of the NP in solution using a recombinant protein produced in E. coli. A codon-optimized Profinity eXact™-tagged NP cDNA was cloned into pET-3d vector and transformed into E. coli T7 Express. The recombinant protein was first purified via chromatographic step using an affinity tag-based system that was followed by tag cleavage with sodium fluoride, resulting in proteolytic removal of the N-terminal tag sequence. The digested sample was then loaded directly onto a size exclusion chromatography run in the presence of L-Arg-HCl, resulting in removal of host nucleic acids and endotoxin. The molecular mass of the main NP fraction was determined by mass photometry as a dimeric form of NP, consistent with the blue native PAGE results. Interestingly, analysis of the purified NP by our newly developed agarose native gel electrophoresis revealed that it behaved like an acidic protein at low concentration despite its alkaline isoelectric point (theoretical pI = 10) and displayed a unique character of concentration-dependent charge and shape changes. This study should shed light into the behavior of NP in the viral life cycle.

4.
Biotechniques ; 72(5): 207-218, 2022 05.
Article in English | MEDLINE | ID: covidwho-1779828

ABSTRACT

We have developed a new Western blotting method of native proteins from agarose-based gel electrophoresis using a buffer at pH 6.1 containing basic histidine and acidic 2-(N-morpholino)ethanesulfonic acid. This gel electrophoresis successfully provided native structures for a variety of proteins and macromolecular complexes. This paper is focused on the Western blotting of native protein bands separated on agarose gels. Two blotting methods from agarose gel to PVDF membrane are introduced here, one by contact (diffusion) blotting and another by electroblotting after pre-treating the agarose gels with SDS. The contact blotting resulted in the transfer of native GFP, native human plexin domain containing protein 2 (PLXDC2) and native SARS-CoV-2 spike protein, which were detected by conformation-specific antibodies generated in-house.


Subject(s)
COVID-19 , SARS-CoV-2 , Blotting, Western , Electrophoresis, Agar Gel/methods , Electrophoresis, Polyacrylamide Gel , Gels , Humans , Proteins/chemistry , Sepharose/chemistry , Spike Glycoprotein, Coronavirus
5.
Int J Biol Macromol ; 189: 869-878, 2021 Oct 31.
Article in English | MEDLINE | ID: covidwho-1370533

ABSTRACT

Electrophoresis is one of the major techniques to analyze macromolecular structure and interaction. Its capability depends on the sensitivity and specificity of the staining methods. We have here examined silver staining of proteins and nucleic acids separated by agarose native gel electrophoresis. By comparing five commercial kits, we identified Silver Stain Plus from Bio-Rad most adequate, as it provided little background staining and reasonable band staining. One of the disadvantages of the Silver Stain Plus kit is its variable staining of glycoproteins as tested with several model samples, including hen egg white proteins, α1-acid glycoprotein and SARS-CoV-2 Spike protein. One of the advantages of silver staining is its ability to stain nucleic acids as demonstrated here for a model nucleic acid with two kits. It was then used to monitor the removal of nucleic acids from the affinity-purified maltose binding protein and monoclonal antibody. It also worked well on staining proteins on agarose gels prepared in the vertical mode, although preparation of the vertical agarose gels required technological modifications described in this report. With the silver staining method optimized here, it should be possible in the future to analyze biological samples that may be available in limited quantity.


Subject(s)
Egg Proteins/chemistry , Nucleic Acids/chemistry , Orosomucoid/chemistry , SARS-CoV-2/chemistry , Silver Staining , Spike Glycoprotein, Coronavirus/chemistry , Animals , Chickens , Electrophoresis, Agar Gel , Humans
6.
J Proteome Res ; 20(5): 2618-2627, 2021 05 07.
Article in English | MEDLINE | ID: covidwho-1171620

ABSTRACT

New approaches to rapid, simple, in vitro diagnostic immunoassays that do not rely on centralized laboratory facilities are urgently needed for disease diagnosis and to inform treatment strategies. The recent and ongoing COVID-19 pandemic has emphasized that rapid diagnostics are needed to help guide government policies on quarantines, social distancing measures, and community lockdowns. A common approach to developing new immunoassays is to modify existing platforms (e.g., automated ELISA and lateral flow assays) for the new analyte, even though this does not address the drawbacks of existing platforms. An alternate approach is to search for robust assays that have been superseded but could in fact solve important challenges using modern technologies. Immunodiffusion is one such platform based on unique "precipitin ring" patterns formed in gels or paper following interactions between proteins and cognate antibodies in diffusion/reaction systems. Herein, we investigate the microstructure of these precipitin rings using a combination of fluorescence and electron microscopy and also perform a mass spectrometry investigation to determine the proteomic composition of the rings. We observed that the rings were composed of microparticles, which we termed "precipitin complexes", and that these complexes were composed of at least 19 key proteins, including immunoglobulins and complement factors along with a range of plasma proteins, possibly related to immune complexes and/or high-density lipoprotein particles. This information will be useful in developing new in vitro diagnostics using reaction/diffusion systems-techniques that require a single assay step and that only require calibrated length measurements for target protein quantification.


Subject(s)
COVID-19 , Proteomics , Communicable Disease Control , Humans , Immunodiffusion , Microscopy , Pandemics , Precipitins , SARS-CoV-2
7.
PeerJ ; 8: e10639, 2020.
Article in English | MEDLINE | ID: covidwho-994191

ABSTRACT

In light of the COVID-19 pandemic, studies that work to understand SARS-CoV-2 are urgently needed. In turn, the less severe human coronaviruses such as HCoV-229E and OC43 are drawing newfound attention. These less severe coronaviruses can be used as a model to facilitate our understanding of the host immune response to coronavirus infection. SARS-CoV-2 must be handled under biosafety level 3 (BSL-3) conditions. Therefore, HCoV-229E and OC43, which can be handled at BSL-2 provide an alternative to SARS-CoV-2 for preclinical screening and designing of antivirals. However, to date, there is no published effective and efficient method to titrate HCoVs other than expensive indirect immunostaining. Here we present an improved approach using an agarose-based conventional plaque assay to titrate HCoV 229E and OC43 with mink lung epithelial cells, Mv1Lu. Our results indicate that titration of HCoV 229E and OC43 with Mv1Lu is consistent and reproducible. The titers produced are also comparable to those produced using human rhabdomyosarcoma (RD) cells. More importantly, Mv1Lu cells display a higher tolerance for cell-cell contact stress, decreased temperature sensitivity, and a faster growth rate. We believe that our improved low-cost plaque assay can serve as an easy tool for researchers conducting HCoV research.

SELECTION OF CITATIONS
SEARCH DETAIL